Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel

نویسندگان

  • Jian Yang
  • Yuh Nung Jan
  • Lily Y Jan
چکیده

Inwardly rectifying K+ channels conduct more inward than outward current as a result of voltage-dependent block of the channel pore by intracellular Mg2+ and polyamines. We investigated the molecular mechanism and structural determinants of inward rectification and ion permeation in a strongly rectifying channel, IRK1. Block by Mg2+ and polyamines is found not to conform to one-to-one binding, suggesting that a channel pore can accommodate more than one blocking particle. A negatively charged amino acid in the hydrophilic C-terminal domain is found to be critical for both inward rectification and ion permeation. This residue and a negatively charged residue in the putative second transmembrane segment (M2) contribute independently to high affinity binding of Mg2+ and polyamines. Mutation of this residue also induces Mg(2+)- and polyamine-independent inward rectification and dramatically alters single-channel behavior. We propose that the hydrophilic C-terminal domain comprises part of the channel pore and that involvement of both hydrophilic and hydrophobic domains in pore lining may provide a molecular basis for the multi-ion, long-pore nature of inwardly rectifying K+ channels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Roles of Charged Amino Acid Residues on the Wall of the Cytoplasmic Pore of Kir2.1

It is known that rectification of currents through the inward rectifier K(+) channel (Kir) is mainly due to blockade of the outward current by cytoplasmic Mg(2+) and polyamines. Analyses of the crystal structure of the cytoplasmic region of Kir2.1 have revealed the presence of both negatively (E224, D255, D259, and E299) and positively (R228 and R260) charged residues on the wall of the cytopla...

متن کامل

Electrostatics in the Cytoplasmic Pore Produce Intrinsic Inward Rectification in Kir2.1 Channels

Inward rectifier K+ channels are important in regulating membrane excitability in many cell types. The physiological functions of these channels are related to their unique inward rectification, which has been attributed to voltage-dependent block. Here, we show that inward rectification can also be induced by neutral and positively charged residues at site 224 in the internal vestibule of tetr...

متن کامل

Multi-ion distributions in the cytoplasmic domain of inward rectifier potassium channels.

Inward rectifier potassium (Kir) channels act as cellular diodes, allowing unrestricted flow of potassium (K(+)) into the cell while preventing currents of large magnitude in the outward direction. The rectification mechanism by which this occurs involves a coupling between K(+) and intracellular blockers-magnesium (Mg(2+)) or polyamines-that simultaneously occupy the permeation pathway. In add...

متن کامل

Polyamine permeation and rectification of Kir4.1 channels.

Inward rectifier K(+) (Kir) channels are expressed in multiple neuronal and glial cells. Recent studies have equated certain properties of exogenously expressed Kir4.1 channels with those of native K(+) currents in brain cells, as well as demonstrating the expression of Kir4.1 subunits in these tissues. There are nagging problems however with assigning native currents to Kir4.1 channels. One ma...

متن کامل

Activation of Inward Rectifier Potassium Channels in High Salt Impairment of Hydrogen Sulfide-Induced Aortic Relaxation in Rats

Introduction: Hydrogen sulfide (H2S) plays a key role in the regulation of vascular tone and protection of blood vessels against endothelial dysfunction. Since the mechanism of salt impairing H2S-induced vascular relaxation is not fully clear, therefore this study was designed to investigate the role of potassium (K+) channels in the vasodilatory effects of exogenous H2S in rat aortic rings.&nb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 14  شماره 

صفحات  -

تاریخ انتشار 1995